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THE ASYMPTOTIC FORM OF THE SOLUTIONS OF THE INTEGRAL EQUATIONS OF
POTENTIAL THEORY IN THE NEIGHBOURHOOD OF THE CORNER POINTS OF A CONTOUR™

S.S. ZARGARYAN and V.G. MAZ'YA

The integral equations of the theory of the logarithmic potential on a
clogsed piecewise-smooth contour are considered. Asymptotic representations
are obtained for the solutions of the integral equations in the region of
the corner points cof the contour, and formulas are obtained for the
coefficients of these representations. As in /1/, information on the
solutions of the integral equations of potential theory are derived from
the well-known results of the asymptotic form of the solutions of the
internal and external Dirichlet and Neumann problems. It is shown that,
irrespective of the value of the angle in the region of the corner points
of the contour, the solution of the integral equation of the internal
Dirichlet problem has an unevenness, while the soluticon of the integral
equation of the external Neumann problem has a singularity, whereas both
the solutions of the boundary value Dirichlet and Neumann problems obtain
irregularities in the region of the corner points only for angles
occurring in the region.

Quite a number of asymptotic forms of the solutions of elliptic boundary value problems
are known in the region of corner and conical points /2, 3/. However, the asymptotic behaviour
of the solutions of the integral equations of the same problems have not been investigated,
despite the need for such investigations for the method of boundary integral equations.

Below, using the example of the integral equations of the theory of the logarithmic poten-
tial, we describe a method for determining the asymptotic forms of the solutions in the regiocn
of the corner points of a contour. Only boundary value problems for harmonic functions of two
variables are considered, but the scheme proposed is of a general form and can be applied to
integral egquations of other classical boundary value problems in mathematical physics.

Suppose I' is a simple closed piecewise-smooth curve with a finite number of corner points
P11 Pgr -+ > Pme We will denote by @i the boundary region, situated inside I , and by Q¢ the
region external to I' . We will denote the opening span of the angle between the semitangents
at the points p; from the side of the region @' by «; . We will assume that 0<{o;<2n when
i=1,2,...,m

We will first consider the internal Dirichlet problem

Aui=0 in QL ul =9 (1)

where p is the contraction of the smooth function in g* on the contour I' . The classical
method of solving (1) is to find the function in the form of the potential of a double layer
cos 0
u(=)=-—Su~(y) —ds,, peC(l) r=|z~y|
T

where § is the angle formed by the external normal a, to T at the point y=stp, and the vector
¥y — 2. The density p satisfies the integral equation

1 8 1
@)+ 5 Su(y)—-"wf ds, = — =9 (z) ze=I\Up; (2)
r

which is uniquely solvable in the space (¢ (I) /47,
We will denote by «# the solution of the external Dirichlet problem

Aut=0 1in Q' w* =49 (3)
As is well-known
t i ¢ 1
w(z)=%—5(%_%)log7dsv+u’(oo) rel, z£p; (4}
T

where uf (o) 1is the limiting value of the function u* at infinity.
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We will introduce the solution » of the external Neumann problem

_ o | _ ' ou® (5)
4r=0 in €, On jr or T on

which tends to zero at infinity.

Since
1 1 & a 1
v(I).——-—-—zn S(logT—au —vg IOg—;.)d‘yv zeQ®
T
we have
1 cos @ 1 ou' au® ) 1
V($)+TS"(!/) " dsv=_TS(_5;z—_T, log—ds, z=I\Up;
r

which, together with (4) shows that the function (2n) (v— u® (o)) is equal to the solution p
of (2).

For simplicity we will assume that close to the point p; the region coincides with the
SeCctor (g4 iz, =pe®; 0<p <3, 0< 0 < ).

Consider the case when 0<a<n. As p— 0 we have

V(@) =9 O+ ) n + 5 O 5+ 0™ >0, ze@’

: 4 7
ue(z)=q>(0)+C,p7'smhw+%(0)zl+%(0)22+ 0 (%), A=, PY=%+d

Since these equations can be differentiated, we have

6ui u’
T — e =M+ 0 (%), zeTN\p, p—0

Hence it follows from (5) that
v(z) — v (0) ~ C,,p" cos Aw — C,p" sin Ao, 2= Q°%, p—0 (6)

Hence, when 0<a<n we have
1
B() = (0) ~ k5 Copt, p—0 N

where the plus sign corresponds to the ray =0, and the minus sign corresponds to the ray
® =21 — a.

The constant ¢, is determined by the method described in /2/. We will denote by n the
function from €% (0,00),n(p) =1 when p<8,n(P) =0 when p>25. We will put
w (2) = v {2) — v (0) + €1 (p) p* sin Ao (8)

According to (5), this function is the solution of the problem

Aw (z) = —CA (n (p) p* sin Aw), z = Q°

ow o' ] .
T le =~ + O g ()¢ sinda)

In view of (6) and (8) we have
w () ~ Cop* cos Ao, re Q% p—0
Hence (see /2/) the following equation holds:
ou’ o’
co___-_S t°cia (m (p) P sml.m)d:c-f—-——S; =t 0,, (n ) ¢* sin Ao) | d
o° r
where ¢ is an harmonic function in @ , continuous outside any neighbourhood of the point Py
with zero normal derivative on T\ Up;, and having the asymptotic form
¢ (z) ~p~* cos Aw, p— 0
Hence, after simplification we obtain

1
Cog'ﬂ—S{’lds (9)

T

We will construct an harmonic extension 2! of the function !¢ in the region Q! while pre-
serving the continuity on I‘\pj. Then, in view of (9) we have
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L

1 i
Cr=2{ 19 —0 01

~— ds (10}
r
Equations (7) and (l0O) define the principal term of the asymptotic form of the function
p— w0 when O0<a<n.
Suppose now that n<a<2n. When z& Q@ and 6—0 , the solution of (1) and (3) have the
asymptotic form
i _ R ap o ) n
u (z) = ¢ (0) + Dy sin s0 + TJ:—l—(O)J:1 +E(O)’*"“0 O, 5= =
59 a
W @) = 90) + 50 O 21 + g (0) 22+ 0 (P*9)
Hence
dui au’
T = o =~ D" +0(°)
Consequently,
v(z)—u(0)~Dxp"-———m:o(fs;n) Lo, e p—0
Hence, bearing in mind the relationship between the functions v and u, we find that
tg sn
B @) =1 (0) ~ =S Dy
The constant D, is defined as follows /2/:
1 at’
Dl=—;—g[q><z>—q>(on s (11)
T

where i is a function harmonic in @', equal to zero on:r\ p; and having the asymptotic form
g~ p7% sin go.

We will now consider the asymptotic form of the solution, conjugate to
equation of the external Neumann problem

(2), of the integral

o

o . . OU
Av =0 in 5277,'-'—:\&70!1 I'\Upj
where ¢ is a function that is smooth on the closed arcs 'pip,,

(12)
. PmoyPmy Pmpr .« LE
e Y 1
v (z) = Sv(y) log ~—ds,
T
we have
1 a 1 1 .
v(x)—-TSv(y) 5 log ——ds, = — ¥ (@), e\ Up;
T x
The asymptotic form of the density in the region of the corner point p; can be found
from the equation
1 (13)
v(z):gk an ~ dn
where o' is the solution of the Dirichlet problem
Avi=01in Q, vt=1vt On T (14)
Suppose 0 < a<n. The solutions of (12) and (14)

have the asymptotic form
v (z) — v& (0) ~ C2p"cos7»(m— a), 2 0 2n

vi(.t)—-ug(O)~C..‘pl'sinl<a)—%->(sm-}%)-l, oo
Hence, using (13) we obtain

Ao
v~d[2@r—a) Cpt ety =

where the plus sign corresponds to the ray = o, and the minus sign corresponds to the ray
o= 0, The constant ¢, is given by /2/

1,
02:?S§¢ds
¥
where ¥ is the same function as in

(9).
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Consider the case when =na<a<2n. The solutions of (12) and (1l4) have the asymptotic

form v (z) — v* (0) = O (p) (15)

v (z) — ° (0) ~ C,p% sinco, 0K 0 < @

Hence, from (13) we obtain

10 . o . a
v Qa)t O, Gy — o § 1 — o (O] T s (16)
T

where {* is the same function as in (11).
We will introduce the solution z¢ of the Neumann problem

, ezt ot
AZ=0 in O, —p = On INUp, an

We will show that a solution 2z° of problem (17) exists, which vanishes at infinity, and
in the region of the point p; has the asymptotic form

sin ¢ (0 — 1)

() =00~ +0 () (18)
For small p we have
i@ =p%sinco+0@%, 0K<0<ka (19)

We will denote by g and h the first terms on the right sides of (18) and (19) respectiv-
ely. It is obvious that dg/én= 0k/on on T in the region of the point pj. We will put 2Z¢=
ng — 8 , where nis the function introduced earlier, and @ is the solution of the Neumann
problem

e 58 e, i
A8 =2UMVE+gAN in @, o =—7—g—1)

on T\ p; with finite Dirichlet integral.

The function Zzf constructed in this way, is unique, apart from a constant term and,
possibly, has a logarithmic increase at infinity. We will show that this increase does not
in fact occur.

We will denote by y,' and ¢ the parts of the circle 7y, of radius e with centre at the
point p; situated in gi and Q° respectively, where e is a small positive number. Suppose also
that Ty=TN\K,, where K, is a circle of radius & with centre at the point p; and vg is a
circle of fairly large radius R, inside which I is situated. It is obvious that

n

az oz° oz° og at!
S—a-a-dsz—S—aprds+s—é——ds=—STds-#STds-{-(}(ec)
Yr ve* e e’ Te

We can show by a direct check that

og oh 5.0
S 3 d"=S. i
e ve'

Hence, the flow of the solution 2z¢ through 1y, is

az° oh att g’
STds=S‘~Hds+S 5o—ds+ 0 (%) = S .Tds+0(e°)=0(s°)
Yr ve Te TeUve
and at infinity the function Z° approaches a constant, which can be put equal to zero.

We will now express the constant in (16) in terms of the boundary values of the solution
of problem (12). 1In view of (15)-—(17) we have

€ € aZe 1-0
—nCy = S [v* —0 (0)]-73-’1—:15—1;-0(5 )
TeUve®

Using Green's formula we obtain

Jz¢ av° v’ w°
—nCl=_S [v* — v (0)] o ds+S Zeja-;—ds-}-s Zers—- S Z’-apfda»-l—O(el"’)
Yp ¥p Ty e’
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Passing to the limit in this expression as R —o and &—0, and using the first
relation from (15) and (18), we see that the integrals over 7z and v, tend to zero. Hence

1
Cl=--—ﬂ— S Z%p ds

and consequently the solution v of the integral equation of the external Neumann problem has
the asymptotic form

v (@) ~ — (2am) o7 { Z%p ds
r

The asymptotic form of the solutions of the integral equations of the external Dirichlet
problem and the internal Neumann problem can be found similarly.

REFERENCES

1. MAZ'YA V.G., Integral equations in potential theory in regions with piecewise-smooth
boundaries, Usp. mat. Nauk, 36, 1981.

2. KONDRAT'EV V.A., Boundary value problems for elliptic equations in the region of conical
or corner peoints, Trudy Mosk. mat. o-va, 16, 1967.

3. MAZ'YA V.G. and PLAMENEVSKII B.A., The coefficients in the asymptotic form of the solutions
of elliptic boundary value problems in regions with conical points, Math. Nachr. 76,
1977.

4. RADON I.O., Boundary value problems for a logarithmic potential, Usp. mat. Nauk, 1, 1946.

Translated by R.C.G.



